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Chain aggregate structure and magnetic birefringence in polydisperse ferrofluids
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The theory of particle association in chains in dilute ferrofluids and dipole fluids is generalized to the case
of polydisperse systems. The chains could be formed by ferroparticles of different sizes, so various types of
chain aggregates are considered. The probabilities of chain structure appearance are calculated, and the phase
diagram, allowing to find the most probable structure with only the continuous particle size distribution known,
is built. Our results demonstrate that in spite of a very weak dipole-dipole interaction between the small size
fraction particles, their presence exerts a decisive influence on the ferrofluid microstructure. The chain short-
ening caused by the small particles sticking to the edges of chains formed by large particles is discovered
theoretically. The latter effect is proved to exist by the recent computer simulations on bidisperse ferrofluid
makeup. The application of the developed model to the description of magnetic birefringence phenomena in
weak external magnetic fields shows a very good agreement with experimental data.

DOI: 10.1103/PhysRevE.70.021401 PACS nuner82.70-y, 61.20.Gy, 75.50.Mm, 78.20.Ls

[. INTRODUCTION demonstrating not only the chain-like aggregate existence
but also their great influence upon diffusional and hydrody-
The materials, the properties of which could be effectivelynamic properties of ferrofluids, are worth mentionifsege,
controlled by an external magnetic field, are of great interestor example, Ref[12]). The condensation of ferroparticles,
either from theoretical or practical points of view. Magnetic known as the phase separation, has also been obsgr$ed
fluids (ferrofluids, ferrocolloidsare the suspensions of mag- ~ The peculiar feature of ferrofluids is the interparticle mag-
netic nanosized particlg&e oxides, Co, Ni, etzcovered by  netic dipole-dipole interaction. This interaction has a noncen-
a solvent layer. The magnetic particles generally are approxiral character and depends not only on the distance between
mately 10 nm in diameter. Particles of this size, whether theyerroparticle centers but also on the mutual orientation of
be ferrite or metal, possess a single magnetic domain onlyl€ir magnetic moments. Hence, the chain aggregates com-
So, each particle has its own magnetic momenthe value _posed of ferroparticles, the magnenc mom_t?’nts qf_ which are
of which is proportional to the magnetic core volume and" the most favorable energetic “head-to-tail” position, prove

depends upon the saturation magnetization of the materi%? be typical for magnetic fluids. So, the computer simula-
Mg:m=M,md/6; herex stands for the particle magnetic ions and experimental observations were accompanied by

. . : ) theoretical studies of the chain formation procgs4-1§.
b e s oe WO apptoaches (o the chan ageegate cescrplon wee
’ gproposed. The first one used so-called dynamic methdl

different aggregates. Rheological, hydrodynamic, diffusion; o "nanicle combination/recombination processes in chains
magnetic, and optical properties of a fe.rroflwd change b ere treated as reversible chemical reactions. With the dy-
hundreg ltlmeshunder alt(n ?pplled ma%]netm f'?'? .Of mogelratﬂamic equilibrium in demand the chain distribution as well

strength(less than 40 kA/m So, such material is a chal- as other important properties of the system could be ob-

lenging subject for scientific research as well as for diﬁ‘erenttained_ The second commonly used approach was based on

apglcatlons. imulatiorid h h h . the free energy minimizatiofsee Ref[16]). The free energy
ecent computer simu atiorj{d—4| ave shown the mi- ¢ regarded as a functional of the chain distribution density.

croscopic structure of dipolar model fluids to be much MOresy, this method was called the density functional approach.

complex than previously expected. The system at a high di'I“he equivalence of these methods is an evident consequence
polar strength and low volume fraction has proved to assog; 4,4 thermodynamic fundamentals. According to these

works, a considerable part of ferroparticles at low densities
- : &hd intensive magnetic dipole interaction is connected in
observgc[l]. An additional attractive force presence has ' chains, the mean length of which appears to be an increasing
sulted in a usual condensation, as in the Stockmayer fluig, ion of a ferroparticle concentration. Naturally, an exter-
(3] nal magnetic field stimulates the chain formation. Unfortu-
nately, no theoretical model properly describing the magnetic

111 wh bi d  field. Th h field influence upon the chain formation process has been
crease{11] when subjected to a magnetic field. These phey, ,;; yet. Moreover, almost all known computer simulations

nomena explanations in terms of chain aggregates seem to By theoretical studies deal with model monodisperse dipolar
the most commonly used one. A lot of experimental stud|esﬂuidS and magnetic colloids

The point is that such a monodisperse approximation does
neglect an extremely important and undoubtedly inherent
*Email address: alexey.ivanov@usu.ru feature of real ferrofluids, that is the polydispersity. There is
"Email address: sue.kantorovich@usu.ru only one theoretical workl7] where an attempt to allow for

It is well known, that magnetic fluids become optically
anisotropic[5-10 and demonstrate an abrupt viscosity in-

1539-3755/2004/1@)/02140110)/$22.50 70021401-1 ©2004 The American Physical Society



A. O. IVANOV AND S. S. KANTOROVICH PHYSICAL REVIEW E70, 021401(2004

the polydispersity influence on the chain formation has been 4.
made. In this paper the real magnetic fluid is approximated
by a model bidisperse system, containing a small number of
large particles and a great amount of small ones. Still, in this
model only large particles can form aggregates, while small
particles remain just an environment. Computer simulations
of the bidisperse model ferrofluid have been dptieas well.
The results of this investigation will be discussed later.

This paper addresses the basic question of the ferrofluid
polydispersity influence on the chain aggregate structure. It
is when the theoretical model, describing the different size

particle aggregation in chains, is successfully developed and g %
the mathematical algorithm, allowing to account for all ¢ 00000
chains having different topological structures, is worked out D 00000 00000
(Sec. l). As the peculiarities, brought by the polydispersity E 00000

into the chain formation process, become apparent even in an

example of a two-fraction system, we focus our attention on FIG. 1. Equation(1) integer solution surface for chains contain-
the following approach. The real polydisperse ferrofluid ising three large and two small particles. Those solutions that corre-
approximated by the bidisperse system consisting of smafiPond to the real chain structures are encir¢RpHE).

and large particle fractions. The free energy density func-

tional for this bifractional system is built on the basis of the different chains, consisting of large particles andn small
monodisperse ongec. Ill). An effect of large particle chain  ones. The algorithm, allowing to account for all chains being
shortening caused by the small particle presence has beelistinguishable not only from the energetic but also from the
found and compared with the same effect described in Rekntropic point of view, is as follow§l8]. For each chain its

[4] (Sec. V). The relative shortening is close to the onefree energy is uniquely determined by the following six pa-
found during computer simulations. The probabilities oframeterse;;,€;2,6,5,a,b,c. Here,e;1,6,,,€,, are the effective
chain structure existence are studied, and a phase diagramiaferaction energies between two nearest neighboring par-
aggregated ferrofluid is built. One of the main results is theticles from corresponding fractions 1 and 2, for example,
following: the majority of large particles in the real polydis- is the energy of the small and large interparticle bond. The
perse ferrofluid is connected in short chains, and the mostalues ofa,b,c are the numbers o, ;,e;,,6,, bonds, respec-
probable structure is a chain consisting of some large patively. Let us introduce two vectors: the energy veckr
ticles, at both edges of which there is one small particle. The=(e;;,€;5,€,,) and the structure vecto®8=(a,b,c). Their
model check-up is carried out in Sec. V. The chain distribu-scalar producS-E=ae;;+be,,+ce,, equals to the effective
tion obtained is used for a description of the experimentallychain energy. It should be stressed, two chains with the same
observed magnetic birefringence in a weak field limit. In thisenergy are not always entropically indistinguishable, see Fig.
case the optical anisotropy is assumed to be caused by the structure D. As the numbeasb,c stand for the quantity of
chain orientation only. Theoretical results prove to be closeéhonds in a chain, there are some restrictions to be imposed.
to those of the experiment. The main summary is given in (1)

Sec. VL.
a+b+c=m+n-1. (1D

Il. BIDISPERSE MODEL: THE ALGORITHM It means that the total numper of bonds per chan-1
equals to the sum of three different type bond numbers;
Let us regard a model bidisperse system consisting of two (2) a,b,ce N. The number of bonds is to be natural. In
fractions: the small particles form the first fraction and theFig. 1 the plane of all natural-valued solutions of E#) is
large ones form the second fraction. To use the energy defuilt for m=2,n=3, for example;
sity functional method the following assumptions are tradi- (3) as<m-1. It means that the 1-1 bond number cannot
tionally adopted:(a) Each fraction consists of identical be larger than the number of small particles minus ane;
spherical particles with the constant magnetic momént; <n-1. This is the similar restriction on the 2-2 bond num-
Structures that differ from those of chains are ignor@dl; ber.
Only the interaction between the nearest neighboring par- Restrictions on the 1-2 bond number are a bit more cum-
ticles in every chain is taken into account; a@ The di- bersome: ifm<n thenb=<2m; if n<m thenb=<2n; if m
luted ferrofluids are studied, that is why, an interaction be=n thenb<2m-1. The maximal number of 1—2 bond could
tween chains is not considered. Thus, it is necessary to obtalie reached in a chain, where particles from each fraction are
the free energy functional for such a system, using the exalternated with each other. Thus, this number is limited by
pression of the partition function. The final problem is to find the quantity of that very particles which are in minority in a
the minimum of the free energy as a functional of the chainchain. For example, for a chain consisting of 2 small and 3
distribution under the mass balance condition. large particleqFig. 1) the maximal value ob equals to 4
To obtain the free energy functional for such a bifractional=2m,m=2 and is reached in the structure E.
system, one needs to find the energies of all topologically (4) m<n+10 c>0n<m+10 a>0. This provides at
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least one direct 1—-1 or 2—2 contact if the numbers of various dQ; = (4771 sin wdw,dZ;, (3)
fraction particles in a chain differ for more than unity;
(n#0)& (m#0) 0 b>0. To put it differently, if a chain con-
tains particles of both fractions, the 1-2 contact is
inescapable. _ where the vector; j41(fi j+1; 6 i+1; @i i+1) connects the cen-
Those solutions that correspond to the real chain strucgs ofith andi+1th particles(i=1,2, ... p—1), the vector
tures are encircle¢Fig. 1). As a result, the algorithm consists Q,(w;: ¢ determines théth particle magnetic moment direc-

of two stepsi(a) to find all natural-valued solutions of equa- tion (m=mQ,); Ug(ii+1) denotes the magnetic dipole-

tion (1); (b) to choose those solutions that meet real chain,. . ' . . .
. ) T - ipole interaction potential between two nearest neighboring
structures, i.e., to impose the earlier listed restrictions. Ané]I

; ; . . é)articles in a chain; as far as the potentig(i i +1) is con-
what is more, such a vector solution uniquely defines th cerned, it stands for a central interparticle interactisteric
chain structure class. Thus, for each paimgh:m+n=1 a re ulsién van der Waals attractionpelectrostatic repulsion in
finite number of energetically distinguishable chain Struc'ioﬁic stab'ilized ferrofluids Usuall tr’1e hard sphere F())tential
tures I(n,m) exists, to each chain type an index . L y phere p

. . is used:U;=Us. In cases of the zero and the infinite exter-
el1,1(n,m] is given. Of coursel(n,m) grows withn+m nal magnetic fieldH, all of the factors in products
increase. The sé85,=(a;,b;,c;)} consists of structure vectors n-1 n ’

(energetic classesfor fixed n,m. The functiong(i,n,m) .H‘=1.dri b Hi:ldﬂ.‘ have the same v_alue and S0 the f‘"%“?tor'

9 S Ngu.N.M zation of expressioli3) takes place, i.e., the chain partition
stands for the concentration gh structure chains, contain-

; . . function Z,, could be presented in the form
ing n large andm small particles. As it was noted before not

all of the chains having the same energy are entropically InZ,=Ino" 1+ (n-1)e,
indistinguishable. For example, for the clasg($®e Fig. 1

we have two entropically distinguishable structures. Thus, to 1 Uy(12) + U412)
e=Iny— [ drqy, | dQ, expl - .
1%

_ .2 :
ariica=r{01dri g SIN G 41d6 41de; 41,

allow for all entropically(topologically different chains be- —a—= ===

longing to the same energy class it is essential to introduce a KT

factor, the value of which equals to such subclasses quantity. (4)

So, let us define an entropy factd(i ,n,m) denoting a num-

ber of topologically different chain structures relevant to theThe particle volume plays a part of the normalizing coef-
same energetic clas§, for example,K(ip,3,2=2 for D  ficient. The parametee denotes an effective energy of one
class in Fig. 1. There is no general formula to describdntérparticle bond. Its calculation could be found in Refs.
K(i,n,m). Some entropy factors for different topological [14,13. For zero and infinite fields, for example, these ener-

classes could be found in expressidd). gies are

The worked out algorithm could be generalized for any exp(2y) exp(2y)
finite number of fractions. It is just a question of the dimen-  gH=0) = |n{—7] e(H — x) = In[ Y } ,
sion of a hyperplane defined by Eq). 3y’ 37

)
i1
Ill. BIDISPERSE MODEL: THE FUNCTIONAL Y= 6uKT’

The density functional approach used for monodispers

systems in Ref[16] drives to the following target setting: %ere v stands for the dipole-dipole coupling constant. It is

clearly seen that the effective energy of the interparticle bond
in the case of an infinitely intensive magnetic field is larger

=In Zn:|- (2)  than in a zero field, the difference is equal toynThus, in
magnetic saturation the chain length becomes larger on av-

Hereg(n) stands for a concentration of chains containing €rage. Unfortunately, the precise equilibrium chain lengthen-

particles per unit volumekT is the thermal energy, and, ing in a field of modera_te strength appears to k_Je much more
has a meaning of a chain partition function complicated mathematical problem, the solution of which

has not been found yet. It is caused by the absence of fac-

F=kT> g(n){m%”)

n=1

n-1 n torization in the partition functiori3), because the interac-
Z,= | [ldrii | 1Tde; tion between the particle magnetic moments and an external
=1 =1 field leads to the interparticle orientational correlations be-
[ n-1 Uglii+1)+Ugii+ 1)} tween aII_ the pa_rticles ina cha_in. The field orientation of the
Xexp| — > , stiff rod-like chain aggregates is the only known approach to
i=1 kT take the magnetic field influence into acco(sge Ref[17]).
On the other hand, the mean chain length in equilibrium is a
o (M) Mg T (M- migy) monotonously increasing function of an external field
Uglii+1)=~3 5 B , strength by all means. That is why, the study of two limiting
P+l P+l cases(field absence and saturation condidlioprovides a
physically adequate description of the equilibrium chain for-
liier=Tlisa =, mation.
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For a bifractional system the following free energy func- The examples of classes with corresponding concentra-
tional appears as a natural generalization of the traditiondions and entropic factors are given later to illustrate the pro-
density functional approacdi2—4: cedure

. i,n,m
F=kT> g(i,n,m) Ing(—e) - Zoml,

i,nm

g(1,n,0) = exp(— ex)pslv,,  K(,n,0 =1,

g(ll,n,1) = exp— &,x)p1P5lvy,  K(I,n,1) =1,
I : = ab_c . — (.. 13 1/3)3/
NZam=INvii; +E- S, 0= (017 +037)78, (6)

wherev,,v, are the first and the second fraction particle vol-

umes. The generalization of expressighsleads to the fact _ n 2
that the energy vector componers=(e;;,€;,,€,,) are the 9(1V, n,1) = expl— €22)P1Pz €XPE12~ €20) (V107),
functions of corresponding dipole-dipole coupling constants.
The summation hereb) is carried out taking into account all
entropically and energetically distinguishable chains. So, this

g(lll, n,2) = exp(- ) paphlvs, KL N,2)=1,

K(V,n,1)=n/2, n=2j, K(V,n1)=(n-1)/2,

sum contains the equal terms relevant to the different en- n=2j+1,
tropic classes for each energetic one. To avoid it, the entropic
factor K(i,n,m) introduced earlier is used. Thus, finally the g(V,n,2) = exp(— €,)pap) expern— ex)(v1v3),
following target setting7) for a bidisperse model is obtained
% 1(nm K(V,n,2)=n/2, n=2j, K(V,n2) =(n-1)/2,
F=kT > > K(i,n,mg(i,n,m)
n+m=1 i=1 n= 2] + 1,
g(i,n,mu(i,n,m) (12)
X|In=———-E-§|, g(V1,n,2) = exp(- ex)pip3 exd2(e;; - ex)(viv)),
o(i nm) = ugauTgbvg‘C. 7) K(VI,n,2)=n(n-2)/4, n=2j,
Here F stands for the free energy volume density of the K(VI,n,2)=(n-1)%4, n=2j+1,
system containing different chains formed by particles from
both fractions. The first term in the sufW) corresponds to a g(VII, n,2) = exp(- ezz)pipg exple;; - ezz)(vl/vg)'

chain mixture ideal gas, while the second one allows for the
interactions. There are two differences between the function- K(VILn2)=n/2, n=2j, K(VII,n2)=(n-1)2,
als in the monodisperse and our cases. The first one is the
combinatorial factoK(i,n,m). The scalar produdk -S,, de-

scribing all possible interparticle bonds in each chain, is the n=2j+1,
second one. Finally, the free ener@f) minimum has to be -
found under the mass balance conditions g(VIII, n,2) = exp(— &) 1P, explers — €19)(v1/vav1y),
LW K(VIIL, n,2) = 1
PSS KGnmgh,nmm, ® Vil n,2)=1,

U1 nem=1 i=1
pr=expAi+ep), Pr=expl+ey).

o 1(n, . . L —
o The geometrical presentation of these classes is given in Fig.

P2 . .
v, n+%21 21 K(,n,mg(i,n,mn, O Such a presentation is not only convenient for the series
summation but also drives us to an important recurrence:
wherep4,p, are the volume concentrations of small and largeparameterg,, p, are in powers of the corresponding fraction
particle fractions, respectively. Using the Lagrange methogbarticle numbers for each chain. As for the exponential pow-
the solution obtained is ers, they appear due to one to another bond changes. For the
. . transition from the lind to the 1Vth class, one small particle
g(i.nm =exgam+An+E-Slv(i.nm, (10 from the edge is removed inside the chain between tF\J/vo large
andX\,\, are the Lagrange multipliers to be calculated fromparticles, thus, destroying one 2—2 bond and one 1-2 bond
Egs.(8) and(9). This problem is solvable only numerically. and replacing them by two 1-2 bonds. The energy difference
However, it is useful to perform analytical calculations of theappears in an exponent power.
different chain class contribution. First, we sum up the large “What is the right number of classes to be taken into
particle chains, then the chains with one small particle at th@ccount for a proper description of the free energy?"—that is
edge, then the large particle chains with two small particlegshe question. It is quite clear that the valueggtf,n,m) de-
attached to both edges, etc. Such a regrouping turns the sumpsends upon the interaction energims, €;,,€,, and the vol-
(8) and(9) into the fast decreasing series composed by anaime concentrations, , p,. So, to answer the latter question it
lytical functions of parametens;,\. is essential to deal with real ferrofluids.
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= m constants are taken from Refd4,15 [expression5)]. The
L = energy values under an infinite magnetic field are usually
n 15% —20% larger than the corresponding values in a field
- m absence. Hence, the main fractions consist of particles with
u \ / the negligibly weak interparticle attraction, whereas the in-
n teraction between large particles is quite intensive. Since, the
m energye,; is extremely low, the 1-1 bond cannot be treated
m as a stable one. So, it is reasonable to exclude from the
- n consideration all chain structures containing at least two

me small particles connected with each otliefasses VII and
V.

Under these assumptions the first three chain cldsees
expressior{11) and Fig. 2 turned out to be prevalent. The Ist
class chains consist oflarge particles only. Class Il derives

— from the Ist one by adding one small particle to the chain

edge. Chains, consisting of large particles in the middle, at

\/l m both edges of which there is one small particle, form the Ilird

— —_— class. The contribution of chain classes with small particles
between large oneguch as classes IV-VI in Fig.)2nto

T m sums(8) and(9) turns out to be negligible. This fact is not an
Namamat—p———

artificial consequence from the assumption of the nearest

|

:

n-1 neighbor interaction. At the first sight, the latter approxima-
J— tion seems to be too rough to describe the situation when a
VI m small particle is sandwiched between two large o(s=e
n classes IV-V). However, if one compares the upper esti-

mates of the Ist and the IVth chain class energies the follow-
FIG. 2. Energetic classes. Chain aggregates are composed bymg expressions could be obtained:

large particles and zer@lass ), one(classes Il and 1y, and two (1) nearest neighbors

small particlegclasses Ill, V=VII) with concentrations and entropy

factors given in expressiofil). I(n large particles,0 small particles
. 2y59(n—1),

IV. REAL FERROFLUIDS: RESULTS AND DISCUSSIONS
The particle size distribution in real ferrofluids is continu- |V(n -1 |arge partic|e5,l small particms

ous, so it is necessary to build an appropriate bidisperse ap-

proximation. The method of obtaining a model bidisperse 272N = 3) + 4y1,,

distribution was discussed in Refl9]. It is based on the (2) first and second nearest neighbors

condition of coincidence between experimental and model

magnetization curves. In Table | the model bidisperse distri- I(n large particles,0 small particles

bution of three real ferrofluids could be foun@amples
A,B,D). The main fractiongmole portiong; ~90% —95%
consist of small particles with magnetic core diameter

2y(N—1) + yp(n—2)/4,

~7-9 nm and constant magnetit;. The second fractions IV(n -1 large particles,1 small particles
consist of small numbe¢mole portion ¢,~5% —10% of

large particledx,~15-18 nm with magnetic momenin,. 2950 = 3) + Ay + yoo(N = B)[4 + 2y, dyl (20,5 P
The solvent layer thicknests has the order of valud

~2nm. So, theyparticle volumes are calculated) gsm(x; + 2y1dyl(dy + dip) 1P,

+21)3/6. The expressions for the effective energigsas in- 5

creasing functions of the interparticle dipole-dipole coupling Y22= MIKT D, y1p= mmy/kT e,

TABLE |. Bidisperse approximation for real ferrofluidsamples A, B, and Pand bidisperse system
studied in computer simulatiogsample G. For sample G»,=0.05 andp;=0.0.1.

Sample X (nm) X (Nm) @1 ®2 Pm e e € Ref.
A 7.9 15.5 0.97 0.03 0.01 0.03 0.21 24 [8]
B 8.3 14.4 0.98 0.02 0.01 0.04 0.22 1.6 [8]
c 10.0 16.0 059 182 51 [4]
D 7.8 16.5 0.94 0.06 0.05 0.01 0.13 2.7 [19
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FIG. 3. Poisoning effect. The relative decreasémf(the mean D
number of large particle per chairs plotted as a function of small
particle volume concentratiop;. Points correspond to computer
simulations(see Ref.[4]) (sample C, Table)| line describes the
theoretical result. 5

d2:X2+2|, dlZZ(X1+X2)/2+2.

Thus, the concentration of the Ist class chains related to
the concentration of the IVth class chains is proportional to: 0

(1) nearest neighbors
. _ - _ S FIG. 4. Chain aggregate structure phase diagram for model bi-
g(1,n,0):9(IV,n—1,1) ~ exp4y,— 4y10) > 1, disperse ferrofluids. The diagram is built in the plane of effective

(2) first and second nearest neighbors energiese;», . Curves and points A-D correspond to samples
from Table I.
g(1,n,0):g9(IV,n = 1,1) ~ exp(4y,,— 5y;0) > 1.

Here we use the relations,~ 2x;,d,~1.5d;, which are other energetic class?” The answer is given by Fig. 4. The
typical for the bidisperse models of real commercial fer-appearance probabilities for the chains of three main classes
rofluids (see, for example, Table.llt means that chains are given by the following ratio:

from classes IV, V, etc., appear extremely rare. This result

meets the conclusion in Rdf4]: “... if a small particle is g(1,n,0):g(1l,n=1,2):g(Ill, n = 2,2) = 1:(p,/py):(po/py)?.

a member of a chain, it is predominantly attached to the (12)

end of the chain ....”

It is worth mentioning that in Re{17] only large particle |t should be stressed that the comparison of such probabili-
chains are taking into account. To check whether it is necesjes is to be carried for the chains with the same total particle
sary to allow for the lInd and the Ilird classes let us regard anumber in them only. As the parameters p, stand for the
model large particle fluidp,=cons}, with the small particle  1-2 and 2—2 bonds establishing probabilities, respectively,
volume concentratiop; scaling up. In this case, the larger is this expression becomes clear. Naturaily=p, equality
the small particle concentration the smaller is the mean nummeans that the chains of these three classes are equiprobable.
ber of large particles per chain). In other words, the pres- Consequently, the phase pla®e;.e,, presented in Fig. 4 is
ence of small particles drives to the chain shortening. Thiglivided by the curvep;=p, into two regions of the chain
effect is caused by the appearance of chains from the lindtructure predominance: above the curve there is an area of
and the Ilird energetic classes. A small particle sticking tothe Ist class chain structure domination, and below—the
the chain edge results in the “poisoning” of it, as the follow- most probable are the chains from the llird class. Thus, Figs.
ing chain length increase in this direction becomes energetié4(a) and 4b) have a meaning of the chain structure preva-
cally disadvantageous. Since the small particle concentratiolence phase diagram for polydisperse ferrofluids. To use this
exceeds a valug,~ 1072, the mean chain lengttn) de- phase diagram it is necessary to follow the algorithm:
creases sufficiently, in spite of the expected stimulation of (1) To obtain the parameters of a model bidisperse ferro-
chain aggregate formation due to the growth of total particléluid on the basis of known continuous particle size distribu-
concentration. In Fig. 3 the relative chain length decrease ition for a real magnetic fluid;
illustrated. The solid lingtheoretical resujtis quite close to (2) to calculate the volume concentrations of both frac-
the points which are taken from computer simulatigdg  tions and the effective interaction energms, e,, either in-
The parameters of the latter model fluid are given in Table Ifluenced by an external magnetic field or not; and
sample C. (3) to determine the region in the phase diagram, which

After the poisoning effect is discovered, a natural questiorthe point with just calculated coordinates belongs to.
emerges: “How do the interparticle interaction energies in- The fact is, the region of parameters for any real ferrofluid
fluence upon the prevalence of chains from the one or anis situated below the corresponding phase cunep, [for
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(%) L nected in short chains with small particles at the edges
00 - 1 (chains of the llird clags the chain concentration is rather
high, unlike the monodisperse case where the chains are long
K but their concentration is comparatively low. Although, this
nor conception is related to the chain structures only, it does not
B contradict the possibility of quasispherical cluster existence.
50 - Such friable aggregates were found in recent computer simu-
- lations [20], for example. On the other hand, the thermody-
30 namic approach used here describes the case of the dynamic
- 2 equilibrium and reversible aggregation, which corresponds to
10k 3 the real ferrofluid parameters. While, as far as the magne-
) I | torheological suspensions and/or magnetic fluids with
) 0.02 0.04 006 Pm nonmagnetic holes are concerned, the chain growth has been

. shown [21] to be time dependent up to sizes limited by
FIG. 5. Nonaggregated particles percentagécurve J andu,;  the experimental setup only. However, the presence of
(curves 2 and Bfor both fractions is built for sample Drable has g ch “infinitely” elongated linear chains in commercial

a function of magnetic phase concentratjgn The case of an ex- magnetic fluids would have been inevitably observed
ternal magnetic field absence is described by curve 2, while curve éxperimentally

represents the infinite field influence.

V. BIDISPERSE MODEL CHECK-UP: MAGNETIC

example, fluids A,B, Fig. @; fluid D, Fig. 4b)]. Thus, for BIREFRINGENCE EXPERIMENTS

commercial ferrofluids the most probable chain aggregates
are those from the llird class, consisting of several large As it has been already mentioned, magnetic fluids become
particles, at both edges of which there is one small particlegptically anisotropic when subjected to a magnetic field.
Let us note, that the point of model fluid C from Table I is Light with its electric polarization parallel to the magnetic
situated above the phase curve, see Fi).4t means that field is absorbed morgoositive dichroisny, and experiences
the main class in this fluid is the first one. This fact comes taa higher refractive indexpositive birefringencg than light
an agreement with the result described in R4f, where the  polarized perpendicular to the field. There are several phe-
mean number of small particles per chain is much less thanomena that could be named as origins of birefringg8te
unity. (1) A field-induced effect in the particle material; it is

It is worth mentioning, the mean chain length does notworth saying, that the birefringence scale in this case is much
exceed 5—6 particles for various values of interaction enersmaller than the observed one.
gies ejp, €, even under an infinite external magnetic field. (2) The internal optical anisotropy of the magnetic par-
Moreover, the higher concentration of chains in comparisonicles; however, normally it is not related to suspensions.
with the monodisperse case is to be stressed. The dependen-(3) A shape anisotropy of the particles; the first magnetic
ciesu, (curve 1), u, (curves 2,3, which are the percentages birefringence explanation was given in terms of ellipsoidal
of nonaggregated particles from both fractions, on the totaparticles[5]. Still it is one of the most popular approaches to
magnetic phase concentrati%=ple/ (X + 2I)3+p2x§/ (X, the problem, and a lot of experimental data is well described
+21)% are plotted in Fig. 5 for ferrofluid @Table l). Curve 3 by it [10]. However, according to the way of magnetic core
corresponds to the case of an infinite external magnetic fielqyreparation and particle covering by solvent layer, the same
curve 2—to its absence. As it could be seenpjf~0.05, ellipticity degree for every particle seems to be discussible.
only some 10%—15% of large particles are nonaggregated. (4) The anisotropy caused by the orientation of
Small particles are nonaggregated, if they are not connecteagregates([6,7,9. This explanation seems to be the
with large ones. Thus, 95% —98% of the small particles remost physically reasonable, as the presence of short chain
main single(curve 1. The influence of an external field upon aggregates in ferrofluids has been proved experimentally
the small particle aggregation is so negligible, that corre{2—4].
sponding curves are indistinguishable. Nevertheless the The common approach used in papgs,9 was the fol-
mean chain length in the bifractional model is sufficiently lowing. A ferrofluid was approximated by the model mono-
smaller than in the monodisperse case, our results exceetisperse system with chain aggregates. Such model ferrofluid
those of computer simulations in Rg#]. It is the conse- was regarded as a system of ellipsofdsth dielectric con-
guence of the cluster definition. The fact is, no universalstante,) suspended in carrier liquigvith dielectric constant
criteria exists for the particles to be connected in a chain. Scg;). Each ellipsoid had the magnetic moment. Thus, the bi-
when trying to compare the computer simulation and therefringence was caused by the orientation of ellipsoids which
theoretical data only the qualitative coincidence is expecteded to an internal optical anisotropy of the suspension. In

Hence, the microstructure of commercial ferrofluids Ref.[7] chains were approximated by the infinitely elongated
proves to be as follows: the large part of main fractionsellipsoids, and the differenc&n=n;—n, between the refrac-
(small particles with negligible interparticle interactipme-  tive indices paralleh, and perpendiculan, to the magnetic
mains nonaggregated; the majority of large partidhegth  field (that is the birefringengedepended on the chain con-
low mole portions and high interaction energiese con- centrationd only (13):
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ni = \“”811, nH = \“"833, E=8&q + CDV(<U 0¢80U-‘£¢> - 81), lng(Al‘l/Al‘ls)
-0.45
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FIG. 6. Reduced birefringenc#n/ng as a function of applied

) . magnetic field in log-log scale\n,=8.8x 107 is the birefringence

Heree;;,s33 are the corresponding components of the dl(:"IeC'S£;1turation value. Experimental dqtee Ref[8]) for samples A and
tric tensore, the latter is to be found from the Maxwell g s piotted in dots. Curves are the results of Etp).

equations. The angle brackets mean the averaging with re-

spect t00,¢, WhiCh_ are the apgles in a cylindrical coordinate ¢ 5 \yeak external magnetic field the tensor components
system with rotational matriX, (see, Refs[7,14). The ¢ expressior(14) transforms into
variableV denotes a mean chain volume. .

In Ref. [9] the ellipsoid length distribution was addition- logsg(AN) = 2 logygH + | m
ally taken into account, in other words, chains were approxi- 0010(AN) = 2 logioH +l0g;0 30
mated by different ellipsoids. As it was mentioned earlier the
mean chain length in any monodisperse model was suffi-
ciently larger than in a bidisperse system. To check if the
bidisperse model is applicable for the birefringence descrip-
tion, the following generalization of the earlier developed
approach is used. The model ferrofluid is approximated by
the carrier liquid, chains of three main classes, nonaggre-

ated small, and large spherical particles, the correspondin 2
goncentrations of wr?ich Iere to brf calculated from thr[z3 chaing *+Ving(i.n.2)ajy () By ()]
distribution. The chains are replaced by elongated ellipsoids
of revolution with demagnetization factans,n;* parallel and

X\ > Vig(1,n,0)a(n) B, (n)
n=2

+ 2 [Vyg(ll,n, Dy (n) By (n)
n=1

perpendicular to the ellipsoid major axis respectively. Thus, a = %, o = M, oy = M (15)
the modified expression faxn [for the original see Ref9] KT KT KT
and Eq.(13)] has the following form(14): Here the values ofy for i=I,I1,1ll are theith class chain

magnetic moments related to the thermal energy, and the
coefficientsg; are defined as follows:

* 1
—pl_pl R
e=ert 2 > ginmVi(UgeUhp-s), (19 BB B e ver
n+tm=1 i=l,I1,lll
The dependence of the magnetic birefringet® as a

function of applied magnetic field is plotted in Fig. 6 in

log-log scale. The calculations presented here were made for
whereV,=nv,,V| =nv,+vy,V) =nv,+2v; are the volumes of  ferrofluids A and B from Table I. As it could be seen, the
the Ist, lind, and Ilird class chains. It should be pointed outagreement with the experimental data in the weak field limit
that the chain distributiog(i,n,m) is the function of a mag- is fine. This encouraging fact verifies the chain orientation
netic field strength. So, to calculate the dielectric tersfar  decisive influence upon the internal optical anisotropy, on the
the arbitrary values of magnetic field one has to take intane hand. On the other, it makes us believe that the present
account not only the chain orientation but also their length-model is applicable for a description of the magnetic bire-
ening. As it has been already mentioned, this problem refringence as well as of the ferrofluid microstructure. As for
mains unsolved unfortunately. But, when an applied field ishe more general field conditions, the chain distribution ob-
weak, the chain lengthening is negligible, and the internatained in Sec. Il gives the 15% —20% relative increase of
optical anisotropy is in overwhelming part caused by thethe mean chain length under the influence of an infinitely
orientation of short and relatively stiff chains. The chain dis-strengthened external field. This conclusion is in a good
tribution obtained for zero fieldl1) totally meets the earlier agreement of the experimentally observed saturation in mag-
listed requirements as three main chain classes are composestic birefringence. The latter seems to be impossible if the
by large particles in majority, and the chains are short. Thudpng linear chains are there in the system.
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VI. CONCLUSION The theoretical models described in Rdf8,9] are general-

In conclusion, the analysis presented shows that unliké?€d for a bifractional case. The weak field asymptotics
the monodisperse case the model bidisperse system ffglovv_s to study the _refract|ve mdmgs difference as the
weakly aggregated even at high values of the interaction erftnction of an applied magnetic field and zero field
ergies, external magnetic field, and volume concentrations. fhain distribution. The theoretical results turn out to be
is the consequence of an extremely weak dipole-dipole intefduite close to the ones of the experiment. It is worth
action between small particles, logmot to say, very low menuomng th.at the blrefrmgencg_explanatlon in terr_ns of
large particle mole portion and the poisoning effect describe@nort stiff chains, under the condition when the polydisper-
earlier. The comparison with computer bidisperse simulaSity is taken into account, seems to be the most close to life
tions provides a good agreement in the relative decrease 8- Moreover, our quantitative results totally meet the ex-
the mean chain length. The built phase diagram allows one tBerimental data obtained by Pshenichniletval. [12], ac-
find the most probable chain structure in a real ferrofluid: it¢0rding to whom: “... The most probable shape of such ag-
is the one, consisting of several large particles in the middi@regates is a short stiff chain, formed by several large
of a chain, at both edges of which there is one small particleParticles ... No aggregates in the form of long chains have
Let us stress that the phase point, corresponding to the modggen observed ....”
bidisperse fluid from Ref4], is situated in the region of the
Ist class prevalence. This prediction meet§ the simulatipn ACKNOWLEDGMENTS
result on the mean number of small particles per chain.
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