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The theory of particle association in chains in dilute ferrofluids and dipole fluids is generalized to the case
of polydisperse systems. The chains could be formed by ferroparticles of different sizes, so various types of
chain aggregates are considered. The probabilities of chain structure appearance are calculated, and the phase
diagram, allowing to find the most probable structure with only the continuous particle size distribution known,
is built. Our results demonstrate that in spite of a very weak dipole-dipole interaction between the small size
fraction particles, their presence exerts a decisive influence on the ferrofluid microstructure. The chain short-
ening caused by the small particles sticking to the edges of chains formed by large particles is discovered
theoretically. The latter effect is proved to exist by the recent computer simulations on bidisperse ferrofluid
makeup. The application of the developed model to the description of magnetic birefringence phenomena in
weak external magnetic fields shows a very good agreement with experimental data.
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I. INTRODUCTION

The materials, the properties of which could be effectively
controlled by an external magnetic field, are of great interest
either from theoretical or practical points of view. Magnetic
fluids (ferrofluids, ferrocolloids) are the suspensions of mag-
netic nanosized particles(Fe oxides, Co, Ni, etc.) covered by
a solvent layer. The magnetic particles generally are approxi-
mately 10 nm in diameter. Particles of this size, whether they
be ferrite or metal, possess a single magnetic domain only.
So, each particle has its own magnetic momentm, the value
of which is proportional to the magnetic core volume and
depends upon the saturation magnetization of the material
M0:m=M0px3/6; here x stands for the particle magnetic
core diameter. So, particles are involved not only into the
Brownian motion, but also interact with each other forming
different aggregates. Rheological, hydrodynamic, diffusion,
magnetic, and optical properties of a ferrofluid change by
hundred times under an applied magnetic field of moderate
strength(less than 40 kA/m). So, such material is a chal-
lenging subject for scientific research as well as for different
applications.

Recent computer simulations[1–4] have shown the mi-
croscopic structure of dipolar model fluids to be much more
complex than previously expected. The system at a high di-
polar strength and low volume fraction has proved to asso-
ciate in chain aggregates[2–4], while at higher volume frac-
tion a spontaneous formation of ferroelectric phase has been
observed[1]. An additional attractive force presence has re-
sulted in a usual condensation, as in the Stockmayer fluid
[3].

It is well known, that magnetic fluids become optically
anisotropic[5–10] and demonstrate an abrupt viscosity in-
crease[11] when subjected to a magnetic field. These phe-
nomena explanations in terms of chain aggregates seem to be
the most commonly used one. A lot of experimental studies,

demonstrating not only the chain-like aggregate existence
but also their great influence upon diffusional and hydrody-
namic properties of ferrofluids, are worth mentioning(see,
for example, Ref.[12]). The condensation of ferroparticles,
known as the phase separation, has also been observed[13].

The peculiar feature of ferrofluids is the interparticle mag-
netic dipole-dipole interaction. This interaction has a noncen-
tral character and depends not only on the distance between
ferroparticle centers but also on the mutual orientation of
their magnetic moments. Hence, the chain aggregates com-
posed of ferroparticles, the magnetic moments of which are
in the most favorable energetic “head-to-tail” position, prove
to be typical for magnetic fluids. So, the computer simula-
tions and experimental observations were accompanied by
theoretical studies of the chain formation process[14–16].
Two approaches for the chain aggregate description were
proposed. The first one used so-called dynamic method[14],
i.e., particle combination/recombination processes in chains
were treated as reversible chemical reactions. With the dy-
namic equilibrium in demand the chain distribution as well
as other important properties of the system could be ob-
tained. The second commonly used approach was based on
the free energy minimization(see Ref.[16]). The free energy
was regarded as a functional of the chain distribution density.
So, this method was called the density functional approach.
The equivalence of these methods is an evident consequence
of the thermodynamic fundamentals. According to these
works, a considerable part of ferroparticles at low densities
and intensive magnetic dipole interaction is connected in
chains, the mean length of which appears to be an increasing
function of a ferroparticle concentration. Naturally, an exter-
nal magnetic field stimulates the chain formation. Unfortu-
nately, no theoretical model properly describing the magnetic
field influence upon the chain formation process has been
built yet. Moreover, almost all known computer simulations
and theoretical studies deal with model monodisperse dipolar
fluids and magnetic colloids.

The point is that such a monodisperse approximation does
neglect an extremely important and undoubtedly inherent
feature of real ferrofluids, that is the polydispersity. There is
only one theoretical work[17] where an attempt to allow for
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the polydispersity influence on the chain formation has been
made. In this paper the real magnetic fluid is approximated
by a model bidisperse system, containing a small number of
large particles and a great amount of small ones. Still, in this
model only large particles can form aggregates, while small
particles remain just an environment. Computer simulations
of the bidisperse model ferrofluid have been done[4] as well.
The results of this investigation will be discussed later.

This paper addresses the basic question of the ferrofluid
polydispersity influence on the chain aggregate structure. It
is when the theoretical model, describing the different size
particle aggregation in chains, is successfully developed and
the mathematical algorithm, allowing to account for all
chains having different topological structures, is worked out
(Sec. II). As the peculiarities, brought by the polydispersity
into the chain formation process, become apparent even in an
example of a two-fraction system, we focus our attention on
the following approach. The real polydisperse ferrofluid is
approximated by the bidisperse system consisting of small
and large particle fractions. The free energy density func-
tional for this bifractional system is built on the basis of the
monodisperse one(Sec. III). An effect of large particle chain
shortening caused by the small particle presence has been
found and compared with the same effect described in Ref.
[4] (Sec. IV). The relative shortening is close to the one
found during computer simulations. The probabilities of
chain structure existence are studied, and a phase diagram of
aggregated ferrofluid is built. One of the main results is the
following: the majority of large particles in the real polydis-
perse ferrofluid is connected in short chains, and the most
probable structure is a chain consisting of some large par-
ticles, at both edges of which there is one small particle. The
model check-up is carried out in Sec. V. The chain distribu-
tion obtained is used for a description of the experimentally
observed magnetic birefringence in a weak field limit. In this
case the optical anisotropy is assumed to be caused by the
chain orientation only. Theoretical results prove to be close
to those of the experiment. The main summary is given in
Sec. VI.

II. BIDISPERSE MODEL: THE ALGORITHM

Let us regard a model bidisperse system consisting of two
fractions: the small particles form the first fraction and the
large ones form the second fraction. To use the energy den-
sity functional method the following assumptions are tradi-
tionally adopted: (a) Each fraction consists of identical
spherical particles with the constant magnetic moment;(b)
Structures that differ from those of chains are ignored;(c)
Only the interaction between the nearest neighboring par-
ticles in every chain is taken into account; and(d) The di-
luted ferrofluids are studied, that is why, an interaction be-
tween chains is not considered. Thus, it is necessary to obtain
the free energy functional for such a system, using the ex-
pression of the partition function. The final problem is to find
the minimum of the free energy as a functional of the chain
distribution under the mass balance condition.

To obtain the free energy functional for such a bifractional
system, one needs to find the energies of all topologically

different chains, consisting ofn large particles andm small
ones. The algorithm, allowing to account for all chains being
distinguishable not only from the energetic but also from the
entropic point of view, is as follows[18]. For each chain its
free energy is uniquely determined by the following six pa-
rameters:e11,e12,e22,a,b,c. Here,e11,e12,e22 are the effective
interaction energies between two nearest neighboring par-
ticles from corresponding fractions 1 and 2, for example,e12
is the energy of the small and large interparticle bond. The
values ofa,b,c are the numbers ofe11,e12,e22 bonds, respec-
tively. Let us introduce two vectors: the energy vectorE
=se11,e12,e22d and the structure vectorS=sa,b,cd. Their
scalar productS·E=ae11+be12+ce22 equals to the effective
chain energy. It should be stressed, two chains with the same
energy are not always entropically indistinguishable, see Fig.
1, structure D. As the numbersa,b,c stand for the quantity of
bonds in a chain, there are some restrictions to be imposed.

(1)

a + b + c = m+ n − 1. s1d

It means that the total number of bonds per chainm+n−1
equals to the sum of three different type bond numbers;

(2) a,b,cPN. The number of bonds is to be natural. In
Fig. 1 the plane of all natural-valued solutions of Eq.(1) is
built for m=2,n=3, for example;

(3) aøm−1. It means that the 1–1 bond number cannot
be larger than the number of small particles minus one;c
øn−1. This is the similar restriction on the 2−2 bond num-
ber.

Restrictions on the 1−2 bond number are a bit more cum-
bersome: ifm,n then bø2m; if n,m then bø2n; if m
=n thenbø2m−1. The maximal number of 1–2 bond could
be reached in a chain, where particles from each fraction are
alternated with each other. Thus, this number is limited by
the quantity of that very particles which are in minority in a
chain. For example, for a chain consisting of 2 small and 3
large particles(Fig. 1) the maximal value ofb equals to 4
=2m,m=2 and is reached in the structure E.

(4) m,n+1⇒c.0,n,m+1⇒a.0. This provides at

FIG. 1. Equation(1) integer solution surface for chains contain-
ing three large and two small particles. Those solutions that corre-
spond to the real chain structures are encircled(A)–(E).
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least one direct 1–1 or 2–2 contact if the numbers of various
fraction particles in a chain differ for more than unity;
snÞ0d& smÞ0d⇒b.0. To put it differently, if a chain con-
tains particles of both fractions, the 1–2 contact is
inescapable.

Those solutions that correspond to the real chain struc-
tures are encircled(Fig. 1). As a result, the algorithm consists
of two steps:(a) to find all natural-valued solutions of equa-
tion (1); (b) to choose those solutions that meet real chain
structures, i.e., to impose the earlier listed restrictions. And
what is more, such a vector solution uniquely defines the
chain structure class. Thus, for each pair ofm,n:m+nù1 a
finite number of energetically distinguishable chain struc-
tures Isn,md exists, to each chain type an indexi
P f1,Isn,mdg is given. Of course,Isn,md grows with n+m
increase. The sethSi =sai ,bi ,cidj consists of structure vectors
(energetic classes) for fixed n,m. The function gsi ,n,md
stands for the concentration ofith structure chains, contain-
ing n large andm small particles. As it was noted before not
all of the chains having the same energy are entropically
indistinguishable. For example, for the class D(see Fig. 1)
we have two entropically distinguishable structures. Thus, to
allow for all entropically(topologically) different chains be-
longing to the same energy class it is essential to introduce a
factor, the value of which equals to such subclasses quantity.
So, let us define an entropy factorKsi ,n,md denoting a num-
ber of topologically different chain structures relevant to the
same energetic classSi, for example,KsiD ,3 ,2d=2 for D
class in Fig. 1. There is no general formula to describe
Ksi ,n,md. Some entropy factors for different topological
classes could be found in expression(11).

The worked out algorithm could be generalized for any
finite number of fractions. It is just a question of the dimen-
sion of a hyperplane defined by Eq.(1).

III. BIDISPERSE MODEL: THE FUNCTIONAL

The density functional approach used for monodisperse
systems in Ref.[16] drives to the following target setting:

F = kTo
n=1

`

gsndFln
gsnd

e
− ln ZnG . s2d

Heregsnd stands for a concentration of chains containingn
particles per unit volume;kT is the thermal energy, andZn
has a meaning of a chain partition function

Zn =E p
i=1

n−1

dr i i+1E p
i=1

n

dVi

3expF− o
i=1

n−1
Udsi i + 1d + Ussi i + 1d

kT G ,

Udsi i + 1d = −F3
kmi · r i i+1lkmi+1 · r i i+1l

r i i+1
5 −

kmi ·mi+1l
r i i+1

3 G ,

r i i+1 = r i+1 − r i ,

dVi = s4pd−1 sin vidvidzi , s3d

dr i i+1 = r i i+1
2 dri i+1 sin ui i+1dui i+1dwi i+1,

where the vectorr i i+1sr i i+1;ui i+1;wi i+1d connects the cen-
ters of ith and i +1th particlessi =1,2, . . . ,n−1d, the vector
Visvi ;zid determines theith particle magnetic moment direc-
tion smi =mVid; Udsi i +1d denotes the magnetic dipole-
dipole interaction potential between two nearest neighboring
particles in a chain; as far as the potentialUssi i +1d is con-
cerned, it stands for a central interparticle interaction(steric
repulsion, van der Waals attraction, electrostatic repulsion in
ionic stabilized ferrofluids). Usually the hard sphere potential
is used:Us=UHS. In cases of the zero and the infinite exter-
nal magnetic field H, all of the factors in products
pi=1

n−1dr i i+1, pi=1
n dVi have the same value and so the factor-

ization of expression(3) takes place, i.e., the chain partition
function Zn could be presented in the form

ln Zn = ln vn−1 + sn − 1de,

e= lnH1

v
E dr 12E dV2 expF−

Uds12d + Uss12d
kT

GJ .

s4d

The particle volumev plays a part of the normalizing coef-
ficient. The parametere denotes an effective energy of one
interparticle bond. Its calculation could be found in Refs.
[14,15]. For zero and infinite fields, for example, these ener-
gies are

esH = 0d = lnFexps2gd
3g3 G, esH → `d = lnFexps2gd

3g2 G ,

s5d

g =
pm2

6vkT
.

Here g stands for the dipole-dipole coupling constant. It is
clearly seen that the effective energy of the interparticle bond
in the case of an infinitely intensive magnetic field is larger
than in a zero field, the difference is equal to lng. Thus, in
magnetic saturation the chain length becomes larger on av-
erage. Unfortunately, the precise equilibrium chain lengthen-
ing in a field of moderate strength appears to be much more
complicated mathematical problem, the solution of which
has not been found yet. It is caused by the absence of fac-
torization in the partition function(3), because the interac-
tion between the particle magnetic moments and an external
field leads to the interparticle orientational correlations be-
tween all the particles in a chain. The field orientation of the
stiff rod-like chain aggregates is the only known approach to
take the magnetic field influence into account(see Ref.[17]).
On the other hand, the mean chain length in equilibrium is a
monotonously increasing function of an external field
strength by all means. That is why, the study of two limiting
cases(field absence and saturation condition) provides a
physically adequate description of the equilibrium chain for-
mation.
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For a bifractional system the following free energy func-
tional appears as a natural generalization of the traditional
density functional approach[2–4]:

F = kTo
i,n,m

gsi,n,mdFln
gsi,n,md

e
− ln Zi,n,mG ,

ln Zi,n,m = ln v1
av12

b v2
c + E ·Si, v12 = sv1

1/3 + v2
1/3d3/8, s6d

wherev1,v2 are the first and the second fraction particle vol-
umes. The generalization of expressions(5) leads to the fact
that the energy vector componentsE=se11,e12,e22d are the
functions of corresponding dipole-dipole coupling constants.
The summation here(6) is carried out taking into account all
entropically and energetically distinguishable chains. So, this
sum contains the equal terms relevant to the different en-
tropic classes for each energetic one. To avoid it, the entropic
factor Ksi ,n,md introduced earlier is used. Thus, finally the
following target setting(7) for a bidisperse model is obtained

F = kT o
n+mù1

`

o
i=1

Isn,md

Ksi,n,mdgsi,n,md

3Fln
gsi,n,mdvsi,n,md

e
− E ·SiG ,

vsi,n,md = v1
−av12

m−bv2
n−c. s7d

Here F stands for the free energy volume density of the
system containing different chains formed by particles from
both fractions. The first term in the sum(7) corresponds to a
chain mixture ideal gas, while the second one allows for the
interactions. There are two differences between the function-
als in the monodisperse and our cases. The first one is the
combinatorial factorKsi ,n,md. The scalar productE ·Si, de-
scribing all possible interparticle bonds in each chain, is the
second one. Finally, the free energy(7) minimum has to be
found under the mass balance conditions

r1

v1
= o

n+mù1

`

o
i=1

Isn,md

Ksi,n,mdgsi,n,mdm, s8d

r2

v2
= o

n+mù1

`

o
i=1

Isn,md

Ksi,n,mdgsi,n,mdn, s9d

wherer1,r2 are the volume concentrations of small and large
particle fractions, respectively. Using the Lagrange method
the solution obtained is

gsi,n,md = expfl1m+ l2n + E ·Sig/vsi,n,md, s10d

andl1,l2 are the Lagrange multipliers to be calculated from
Eqs.(8) and (9). This problem is solvable only numerically.
However, it is useful to perform analytical calculations of the
different chain class contribution. First, we sum up the large
particle chains, then the chains with one small particle at the
edge, then the large particle chains with two small particles
attached to both edges, etc. Such a regrouping turns the sums
(8) and (9) into the fast decreasing series composed by ana-
lytical functions of parametersl1,l2.

The examples of classes with corresponding concentra-
tions and entropic factors are given later to illustrate the pro-
cedure

gsI,n,0d = exps− e22dp2
n/v2, KsI,n,0d = 1,

gsII, n,1d = exps− e22dp1p2
n/v2, KsII, n,1d = 1,

gsIII, n,2d = exps− e22dp1
2p2

n/v2, KsIII, n,2d = 1,

gsIV, n,1d = exps− e22dp1p2
n expse12 − e22dsv12/v2

2d,

KsIV, n,1d = n/2, n = 2j , KsIV, n,1d = sn − 1d/2,

n = 2j + 1,

gsV,n,2d = exps− e22dp1
2p2

n expse12 − e22dsv12/v2
2d,

KsV,n,2d = n/2, n = 2j , KsV,n,2d = sn − 1d/2,

n = 2j + 1,
s11d

gsVI, n,2d = exps− e22dp1
2p2

n expf2se12 − e22dgsv12
2 /v2

3d,

KsVI, n,2d = nsn − 2d/4, n = 2j ,

KsVI, n,2d = sn − 1d2/4, n = 2j + 1,

gsVII, n,2d = exps− e22dp1
2p2

n expse11 − e22dsv1/v2
2d,

KsVII, n,2d = n/2, n = 2j , KsVII, n,2d = sn − 1d/2,

n = 2j + 1,

gsVIII, n,2d = exps− e22dp1
2p2

n expse11 − e12dsv1/v2v12d,

KsVIII, n,2d = 1,

p1 = expsl1 + e12d, p2 = expsl2 + e22d.

The geometrical presentation of these classes is given in Fig.
2. Such a presentation is not only convenient for the series
summation but also drives us to an important recurrence:
parametersp1, p2 are in powers of the corresponding fraction
particle numbers for each chain. As for the exponential pow-
ers, they appear due to one to another bond changes. For the
transition from the IInd to the IVth class, one small particle
from the edge is removed inside the chain between two large
particles, thus, destroying one 2–2 bond and one 1–2 bond
and replacing them by two 1–2 bonds. The energy difference
appears in an exponent power.

“What is the right number of classes to be taken into
account for a proper description of the free energy?”—that is
the question. It is quite clear that the value ofgsi ,n,md de-
pends upon the interaction energiese11,e12,e22 and the vol-
ume concentrationsr1,r2. So, to answer the latter question it
is essential to deal with real ferrofluids.
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IV. REAL FERROFLUIDS: RESULTS AND DISCUSSIONS

The particle size distribution in real ferrofluids is continu-
ous, so it is necessary to build an appropriate bidisperse ap-
proximation. The method of obtaining a model bidisperse
distribution was discussed in Ref.[19]. It is based on the
condition of coincidence between experimental and model
magnetization curves. In Table I the model bidisperse distri-
bution of three real ferrofluids could be found(samples
A,B,D). The main fractions(mole portionw1,90% –95%)
consist of small particles with magnetic core diameterx1
,7–9 nm and constant magneticm1. The second fractions
consist of small number(mole portionw2,5% –10%) of
large particlessx2,15–18 nmd with magnetic momentm2.
The solvent layer thicknessl has the order of valuel
,2 nm. So, the particle volumes are calculated asvi =psxi

+2ld3/6. The expressions for the effective energieseij as in-
creasing functions of the interparticle dipole-dipole coupling

constants are taken from Refs.[14,15] [expression(5)]. The
energy values under an infinite magnetic field are usually
15% –20% larger than the corresponding values in a field
absence. Hence, the main fractions consist of particles with
the negligibly weak interparticle attraction, whereas the in-
teraction between large particles is quite intensive. Since, the
energye11 is extremely low, the 1–1 bond cannot be treated
as a stable one. So, it is reasonable to exclude from the
consideration all chain structures containing at least two
small particles connected with each other(classes VII and
VIII ).

Under these assumptions the first three chain classes[see
expression(11) and Fig. 2] turned out to be prevalent. The Ist
class chains consist ofn large particles only. Class II derives
from the Ist one by adding one small particle to the chain
edge. Chains, consisting of large particles in the middle, at
both edges of which there is one small particle, form the IIIrd
class. The contribution of chain classes with small particles
between large ones(such as classes IV–VI in Fig. 2) into
sums(8) and(9) turns out to be negligible. This fact is not an
artificial consequence from the assumption of the nearest
neighbor interaction. At the first sight, the latter approxima-
tion seems to be too rough to describe the situation when a
small particle is sandwiched between two large ones(see
classes IV–VI). However, if one compares the upper esti-
mates of the Ist and the IVth chain class energies the follow-
ing expressions could be obtained:

(1) nearest neighbors

Isn large particles,0 small particlesd:

2g22sn − 1d,

IVsn − 1 large particles,1 small particlesd:

2g22sn − 3d + 4g12,

(2) first and second nearest neighbors

Isn large particles,0 small particlesd:

2g22sn − 1d + g22sn − 2d/4,

IVsn − 1 large particles,1 small particlesd:

2g22sn − 3d + 4g12 + g22sn − 4d/4 + 2g22fd2/s2d12dg3

+ 2g12fd12/sd2 + d12dg3,

g22 = m2
2/kTd2

3, g12 = m1m2/kTd12
3 ,

FIG. 2. Energetic classes. Chain aggregates are composed byn
large particles and zero(class I), one (classes II and IV), and two
small particles(classes III, V–VIII) with concentrations and entropy
factors given in expression(11).

TABLE I. Bidisperse approximation for real ferrofluids(samples A, B, and D) and bidisperse system
studied in computer simulations(sample C). For sample Cr2=0.05 andr1=0.0.1.

Sample x1 snmd x2 snmd w1 w2 rm e11 e12 e22 Ref.

A 7.9 15.5 0.97 0.03 0.01 0.03 0.21 2.4 [8]

B 8.3 14.4 0.98 0.02 0.01 0.04 0.22 1.6 [8]

C 10.0 16.0 0.59 1.82 5.1 [4]

D 7.8 16.5 0.94 0.06 0.05 0.01 0.13 2.7 [19]
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d2 = x2 + 2l, d12 = sx1 + x2d/2 + 2l .

Thus, the concentration of the Ist class chains related to
the concentration of the IVth class chains is proportional to:

(1) nearest neighbors

gsI,n,0d:gsIV,n − 1,1d , exps4g22 − 4g12d @ 1,

(2) first and second nearest neighbors

gsI,n,0d:gsIV,n − 1,1d , exps4g22 − 5g12d @ 1.

Here we use the relationsx2<2x1,d2<1.5d12 which are
typical for the bidisperse models of real commercial fer-
rofluids ssee, for example, Table Id. It means that chains
from classes IV, V, etc., appear extremely rare. This result
meets the conclusion in Ref.f4g: “. . . if a small particle is
a member of a chain, it is predominantly attached to the
end of the chain . . ..”

It is worth mentioning that in Ref.[17] only large particle
chains are taking into account. To check whether it is neces-
sary to allow for the IInd and the IIIrd classes let us regard a
model large particle fluidsr2=constd, with the small particle
volume concentrationr1 scaling up. In this case, the larger is
the small particle concentration the smaller is the mean num-
ber of large particles per chainknl. In other words, the pres-
ence of small particles drives to the chain shortening. This
effect is caused by the appearance of chains from the IInd
and the IIIrd energetic classes. A small particle sticking to
the chain edge results in the “poisoning” of it, as the follow-
ing chain length increase in this direction becomes energeti-
cally disadvantageous. Since the small particle concentration
exceeds a valuer1,10−2, the mean chain lengthknl de-
creases sufficiently, in spite of the expected stimulation of
chain aggregate formation due to the growth of total particle
concentration. In Fig. 3 the relative chain length decrease is
illustrated. The solid line(theoretical result) is quite close to
the points which are taken from computer simulations[4].
The parameters of the latter model fluid are given in Table I,
sample C.

After the poisoning effect is discovered, a natural question
emerges: “How do the interparticle interaction energies in-
fluence upon the prevalence of chains from the one or an-

other energetic class?” The answer is given by Fig. 4. The
appearance probabilities for the chains of three main classes
are given by the following ratio:

gsI,n,0d:gsII, n − 1,1d:gsIII, n − 2,2d = 1:sp2/p1d:sp2/p1d2.

s12d

It should be stressed that the comparison of such probabili-
ties is to be carried for the chains with the same total particle
number in them only. As the parametersp1,p2 stand for the
1–2 and 2–2 bonds establishing probabilities, respectively,
this expression becomes clear. Naturally,p1=p2 equality
means that the chains of these three classes are equiprobable.
Consequently, the phase planeOe12e22 presented in Fig. 4 is
divided by the curvep1=p2 into two regions of the chain
structure predominance: above the curve there is an area of
the Ist class chain structure domination, and below—the
most probable are the chains from the IIIrd class. Thus, Figs.
4(a) and 4(b) have a meaning of the chain structure preva-
lence phase diagram for polydisperse ferrofluids. To use this
phase diagram it is necessary to follow the algorithm:

(1) To obtain the parameters of a model bidisperse ferro-
fluid on the basis of known continuous particle size distribu-
tion for a real magnetic fluid;

(2) to calculate the volume concentrations of both frac-
tions and the effective interaction energiese12,e22 either in-
fluenced by an external magnetic field or not; and

(3) to determine the region in the phase diagram, which
the point with just calculated coordinates belongs to.

The fact is, the region of parameters for any real ferrofluid
is situated below the corresponding phase curvep1=p2 [for

FIG. 3. Poisoning effect. The relative decrease ofknl (the mean
number of large particle per chain) is plotted as a function of small
particle volume concentrationr1. Points correspond to computer
simulations(see Ref.[4]) (sample C, Table I), line describes the
theoretical result.

FIG. 4. Chain aggregate structure phase diagram for model bi-
disperse ferrofluids. The diagram is built in the plane of effective
energiese12,e22. Curves and points A–D correspond to samples
from Table I.
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example, fluids A,B, Fig. 4(a); fluid D, Fig. 4(b)]. Thus, for
commercial ferrofluids the most probable chain aggregates
are those from the IIIrd class, consisting of several large
particles, at both edges of which there is one small particle.
Let us note, that the point of model fluid C from Table I is
situated above the phase curve, see Fig. 4(b). It means that
the main class in this fluid is the first one. This fact comes to
an agreement with the result described in Ref.[4], where the
mean number of small particles per chain is much less than
unity.

It is worth mentioning, the mean chain length does not
exceed 5–6 particles for various values of interaction ener-
gies e12,e22 even under an infinite external magnetic field.
Moreover, the higher concentration of chains in comparison
with the monodisperse case is to be stressed. The dependen-
ciesm1 (curve 1), m2 (curves 2,3), which are the percentages
of nonaggregated particles from both fractions, on the total
magnetic phase concentrationrm=r1x1

3/ sx1+2ld3+r2x2
3/ sx2

+2ld3 are plotted in Fig. 5 for ferrofluid D(Table I). Curve 3
corresponds to the case of an infinite external magnetic field,
curve 2—to its absence. As it could be seen, ifrm,0.05,
only some 10% –15% of large particles are nonaggregated.
Small particles are nonaggregated, if they are not connected
with large ones. Thus, 95% –98% of the small particles re-
main single(curve 1). The influence of an external field upon
the small particle aggregation is so negligible, that corre-
sponding curves are indistinguishable. Nevertheless the
mean chain length in the bifractional model is sufficiently
smaller than in the monodisperse case, our results exceed
those of computer simulations in Ref.[4]. It is the conse-
quence of the cluster definition. The fact is, no universal
criteria exists for the particles to be connected in a chain. So,
when trying to compare the computer simulation and the
theoretical data only the qualitative coincidence is expected.

Hence, the microstructure of commercial ferrofluids
proves to be as follows: the large part of main fractions
(small particles with negligible interparticle interactions) re-
mains nonaggregated; the majority of large particles(with
low mole portions and high interaction energies) are con-

nected in short chains with small particles at the edges
(chains of the IIIrd class); the chain concentration is rather
high, unlike the monodisperse case where the chains are long
but their concentration is comparatively low. Although, this
conception is related to the chain structures only, it does not
contradict the possibility of quasispherical cluster existence.
Such friable aggregates were found in recent computer simu-
lations [20], for example. On the other hand, the thermody-
namic approach used here describes the case of the dynamic
equilibrium and reversible aggregation, which corresponds to
the real ferrofluid parameters. While, as far as the magne-
torheological suspensions and/or magnetic fluids with
nonmagnetic holes are concerned, the chain growth has been
shown [21] to be time dependent up to sizes limited by
the experimental setup only. However, the presence of
such “infinitely” elongated linear chains in commercial
magnetic fluids would have been inevitably observed
experimentally.

V. BIDISPERSE MODEL CHECK-UP: MAGNETIC
BIREFRINGENCE EXPERIMENTS

As it has been already mentioned, magnetic fluids become
optically anisotropic when subjected to a magnetic field.
Light with its electric polarization parallel to the magnetic
field is absorbed more(positive dichroism), and experiences
a higher refractive index(positive birefringence), than light
polarized perpendicular to the field. There are several phe-
nomena that could be named as origins of birefringence[8].

(1) A field-induced effect in the particle material; it is
worth saying, that the birefringence scale in this case is much
smaller than the observed one.

(2) The internal optical anisotropy of the magnetic par-
ticles; however, normally it is not related to suspensions.

(3) A shape anisotropy of the particles; the first magnetic
birefringence explanation was given in terms of ellipsoidal
particles[5]. Still it is one of the most popular approaches to
the problem, and a lot of experimental data is well described
by it [10]. However, according to the way of magnetic core
preparation and particle covering by solvent layer, the same
ellipticity degree for every particle seems to be discussible.

(4) The anisotropy caused by the orientation of
aggregates[6,7,9]. This explanation seems to be the
most physically reasonable, as the presence of short chain
aggregates in ferrofluids has been proved experimentally
[2–4].

The common approach used in papers[6,7,9] was the fol-
lowing. A ferrofluid was approximated by the model mono-
disperse system with chain aggregates. Such model ferrofluid
was regarded as a system of ellipsoids(with dielectric con-
stant«2) suspended in carrier liquid(with dielectric constant
«1). Each ellipsoid had the magnetic moment. Thus, the bi-
refringence was caused by the orientation of ellipsoids which
led to an internal optical anisotropy of the suspension. In
Ref. [7] chains were approximated by the infinitely elongated
ellipsoids, and the differenceDn=ni−n' between the refrac-
tive indices parallelni and perpendicularn' to the magnetic
field (that is the birefringence) depended on the chain con-
centrationF only (13):

FIG. 5. Nonaggregated particles percentagem1 (curve 1) andm2

(curves 2 and 3) for both fractions is built for sample D(Table I) as
a function of magnetic phase concentrationrm. The case of an ex-
ternal magnetic field absence is described by curve 2, while curve 3
represents the infinite field influence.
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n' = Î«11, ni = Î«33, « = «1 + FVskUuf«0Uuf
T l − «1d,

«0 =1
2«1«2

«1 + «2
0 0

0
2«1«2

«1 + «2
0

0 0 «2

2 . s13d

Here«11,«33 are the corresponding components of the dielec-
tric tensor «, the latter is to be found from the Maxwell
equations. The angle brackets mean the averaging with re-
spect tou,f, which are the angles in a cylindrical coordinate
system with rotational matrixUuf (see, Refs.[7,14]). The
variableV denotes a mean chain volume.

In Ref. [9] the ellipsoid length distribution was addition-
ally taken into account, in other words, chains were approxi-
mated by different ellipsoids. As it was mentioned earlier the
mean chain length in any monodisperse model was suffi-
ciently larger than in a bidisperse system. To check if the
bidisperse model is applicable for the birefringence descrip-
tion, the following generalization of the earlier developed
approach is used. The model ferrofluid is approximated by
the carrier liquid, chains of three main classes, nonaggre-
gated small, and large spherical particles, the corresponding
concentrations of which are to be calculated from the chain
distribution. The chains are replaced by elongated ellipsoids
of revolution with demagnetization factorsni

i ,ni
' parallel and

perpendicular to the ellipsoid major axis respectively. Thus,
the modified expression forDn [for the original see Ref.[9]
and Eq.(13)] has the following form(14):

« = «1 + o
n+mù1

`

o
i=I,II ,III

gsi,n,mdViskUuf«0Uuf
T l − «1d, s14d

whereVI =nv2,VII =nv2+v1,VIII =nv2+2v1 are the volumes of
the Ist, IInd, and IIIrd class chains. It should be pointed out
that the chain distributiongsi ,n,md is the function of a mag-
netic field strength. So, to calculate the dielectric tensor« for
the arbitrary values of magnetic field one has to take into
account not only the chain orientation but also their length-
ening. As it has been already mentioned, this problem re-
mains unsolved unfortunately. But, when an applied field is
weak, the chain lengthening is negligible, and the internal
optical anisotropy is in overwhelming part caused by the
orientation of short and relatively stiff chains. The chain dis-
tribution obtained for zero field(11) totally meets the earlier
listed requirements as three main chain classes are composed
by large particles in majority, and the chains are short. Thus,

for a weak external magnetic field the tensor components
from expression(14) transforms into

log10sDnd = 2 log10H + log10

Î«1«2

30

3Ho
n=2

`

VIgsI,n,0daI
2sndbIsnd

+ o
n=1

`

fVIIgsII ,n,1daII
2 sndbIIsnd

+ VIII gsIII ,n,2daIII
2 sndbIII sndgJ

aI =
nm2

kT
, aII =

nm2 + m1

kT
, aIII =

nm2 + 2m1

kT
. s15d

Here the values ofai for i = I ,II ,III are theith class chain
magnetic moments related to the thermal energy, and the
coefficientsbi are defined as follows:

bi = bi
i − bi

', bi
i,' =

1

ni
i,'s«2 − «1d + «1

.

The dependence of the magnetic birefringence(15) as a
function of applied magnetic field is plotted in Fig. 6 in
log-log scale. The calculations presented here were made for
ferrofluids A and B from Table I. As it could be seen, the
agreement with the experimental data in the weak field limit
is fine. This encouraging fact verifies the chain orientation
decisive influence upon the internal optical anisotropy, on the
one hand. On the other, it makes us believe that the present
model is applicable for a description of the magnetic bire-
fringence as well as of the ferrofluid microstructure. As for
the more general field conditions, the chain distribution ob-
tained in Sec. III gives the 15% –20% relative increase of
the mean chain length under the influence of an infinitely
strengthened external field. This conclusion is in a good
agreement of the experimentally observed saturation in mag-
netic birefringence. The latter seems to be impossible if the
long linear chains are there in the system.

FIG. 6. Reduced birefringenceDn/ns as a function of applied
magnetic field in log-log scale,Dns=8.8310−4 is the birefringence
saturation value. Experimental data(see Ref.[8]) for samples A and
B is plotted in dots. Curves are the results of Eq.(15).

A. O. IVANOV AND S. S. KANTOROVICH PHYSICAL REVIEW E70, 021401(2004)

021401-8



VI. CONCLUSION

In conclusion, the analysis presented shows that unlike
the monodisperse case the model bidisperse system is
weakly aggregated even at high values of the interaction en-
ergies, external magnetic field, and volume concentrations. It
is the consequence of an extremely weak dipole-dipole inter-
action between small particles, low(not to say, very low)
large particle mole portion and the poisoning effect described
earlier. The comparison with computer bidisperse simula-
tions provides a good agreement in the relative decrease of
the mean chain length. The built phase diagram allows one to
find the most probable chain structure in a real ferrofluid: it
is the one, consisting of several large particles in the middle
of a chain, at both edges of which there is one small particle.
Let us stress that the phase point, corresponding to the model
bidisperse fluid from Ref.[4], is situated in the region of the
Ist class prevalence. This prediction meets the simulation
result on the mean number of small particles per chain.
Although, the major part of the large particle fraction
is proved to be connected in chains, its low concentration
does not permit chains to become long. More than that,
the 95% –98% of small particles remain nonaggregated.
Thus, the mean chain length turns out to be comparatively
small (less than five particles per chain even under the
influence of an external magnetic field).

The magnetic birefringence in a bidisperse model is stud-
ied theoretically for several ferrofluids in a weak field limit.

The theoretical models described in Refs.[7,9] are general-
ized for a bifractional case. The weak field asymptotics
allows to study the refractive indices difference as the
function of an applied magnetic field and zero field
chain distribution. The theoretical results turn out to be
quite close to the ones of the experiment. It is worth
mentioning that the birefringence explanation in terms of
short stiff chains, under the condition when the polydisper-
sity is taken into account, seems to be the most close to life
one. Moreover, our quantitative results totally meet the ex-
perimental data obtained by Pshenichnikovet al. [12], ac-
cording to whom: “. . . The most probable shape of such ag-
gregates is a short stiff chain, formed by several large
particles . . . No aggregates in the form of long chains have
been observed . . ..”
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